702 stories
·
25 followers

Kylian Mbappé impõe a nova ordem a Neymar Júnior

1 Share

Fayza Lamari foi uma boa jogadora de basquete da Primeira Divisão da França. A devoção por um jogo sacrificado fez com que formasse uma ideia severa da prática esportiva. No Paris Saint-Germain dizem que seu caráter áspero moldou seu filho, a nova estrela da seleção francesa, Kylian Mbappé.

Seguir leyendo.







Read the whole story
luizirber
4 days ago
reply
Davis, CA
Share this story
Delete

Computer Science to the Second Degree

1 Share

Some thoughts on studying computer science from Gian-Carlo Rota:

A large fraction of MIT undergraduates major in computer science or at least acquire extensive computer skills that are applicable in other fields. In their second year, they catch on to the fact that their required courses in computer science do not provide the whole story. Not because of deficiencies in the syllabus; quite the opposite. The undergraduate curriculum in computer science at MIT is probably the most progressive and advanced such curriculum anywhere. Rather, the students learn that side by side with required courses there is another, hidden curriculum consisting of new ideas just coming into use, new techniques and that spread like wildfire, opening up unsuspected applications that will eventually be adopted into the official curriculum.

Keeping up with this hidden curriculum is what will enable a computer scientist to stay ahead in the field. Those who do not become computer scientists to the second degree risk turning into programmers who will only implement the ideas of others.

MIT is, of course, an exceptional school, but I think Rota's comments apply to computer science at most schools. So much learning of CS happens in the spaces between courses: in the lab, in the student lounge, at meetings of student clubs, at part-time jobs, .... That can sometimes be a challenge for students who don't have much curiosity, or develop one as they are exposed to new topics.

As profs, we encourage students to be aware of all that is going on in computer science beyond the classroom and to take part in the ambient curriculum to the extent they are able. Students who become computer scientists only to the first degree can certainly find good jobs and professional success, but there are more opportunities open at the second degree. CS can also be a lot more fun there.

Read the whole story
luizirber
22 days ago
reply
Davis, CA
Share this story
Delete

How long does it take to produce scientific software?

1 Share

Over here at UC Davis, the Lab for Data Intensive Biology has been on extended walkabout developing software for, well, doing data intensive biology.

Over the past two to three years or so, various lab members have been working on the following new pieces of software -

I should say that all of these except for kevlar have been explicitly supported by my Moore Foundation funding from the Data Driven Discovery Initiative.

With the possible exception of dammit, every single one of these pieces of software was developed entirely since the move to UC Davis (so, since 2015 or later). And almost all of them are now approaching some reasonable level of maturity, defined as "yeah, not only does this work, but it might be something that other people can use." (Both dammit and sourmash are being used by other people already; kevlar, spacegraphcats, and boink are being written up now.)

All of these coming together at the same time seems like quite a coincidence to me, and I would like to make the following proposition:

It takes a minimum of two to three years for a piece of scientific software to become mature enough to publicize.

This fits with my previous experiences with khmer and the FamilyRelations/Cartwheel set of software as well - each took about two years to get to the point where anyone outside the lab could use them.

I can think of quite a few reasons why some level of aging could be necessary -

  • often in science one has no real idea of what you're doing at the beginning of a project, and that just takes time to figure out;

  • code just takes time to get reasonably robust when interfacing with real world data;

  • there are lots of details that need to be worked out for installation and distribution of code, and that also just takes time;

but I'm somewhat mystified by the 2-3 year arc. It could be tied to the funding timeline (the Moore grant ends in about a year) or career horizons (the grad students want to graduate, the postdocs want to move on).

My best guess, tho, is that there is some complex tradeoff between scope and effort that breaks the overall software development work into multiple stages - something like,

  1. figure out the problem
  2. implement a partial solution
  3. make an actual solution
  4. expand solution cautiously to apply to some other nearby problems.

I'm curious as to whether or not this pattern fits with other people's experiences!

I do expect these projects to continue maturing as time and opportunity permits, much like khmer. boink, spacegraphcats, and sourmash should all result in multiple papers from my lab; kevlar will probably move with Daniel to his next job, but may be something we also extend in our lab; etc.

Another very real question in my mind is: which software do we choose to maintain and extend? It's clearly dependent on funding, but also on the existence of interesting problems that the software can still address, and on who I have in my lab... right now a lot of our planning is pretty helter skelter, but it would be good to articulate a list of guiding considerations for when I do see pots of money on the horizon.

Finally: I think this 2-3 year timeline has some interesting implications for the question of whether or not we should require people to release usable software. I think it's a major drain on people to expect them to not only come up with some cool new idea and implement it in software they can use, but then also make software that is more generally usable. Both sides of this take special skills - some people are good at methods & algorithms development, some people are good at software development, but very few people are good at both. And we should value both, but not require that people be good at both.

--titus

Read the whole story
luizirber
42 days ago
reply
Davis, CA
Share this story
Delete

The Incredible Machine

1 Share

As we saw in my previous article, Jeff Tunnell walked away from Dynamix’s experiments with “interactive movies” feeling rather disillusioned by the whole concept. How ironic, then, that in at least one sense comparisons with Hollywood continued to ring true even after he thought he’d consigned such things to his past. When he stepped down from his post at the head of Dynamix in order to found Jeff Tunnell Productions and make smaller but more innovative games, he was making the sort of bargain with commercial realities that many a film director had made before him. In the world of movies, and now increasingly in that of games as well, smaller, cheaper projects were usually the only ones allowed to take major thematic, formal, and aesthetic risks. If Tunnell hoped to innovate, he had come to believe, he would have to return to the guerrilla model of game development that had held sway during the 1980s, deliberately rejecting the studio-production culture that was coming to dominate the industry of the 1990s. So, he recruited Kevin Ryan, a programmer who had worked at Dynamix almost from the beginning, and set up shop in the office next door with just a few other support personnel.

Tunnell knew exactly what small but innovative game he wanted to make first. It was, appropriately enough, an idea that dated back to those wild-and-free 1980s. In fact, he and Damon Slye had batted it around when first forming Dynamix all the way back in 1983. At that time, Electronic Art’s Pinball Construction Set, which gave you a box of (virtual) interchangeable parts to use in making playable pinball tables of your own, was taking the industry by storm, ushering in a brief heyday of similar computerized erector sets; Electronics Arts alone would soon be offering the likes of an Adventure Construction Set, a Music Construction Set, and a Racing Destruction Set. Tunnell and Slye’s idea was for a sort of machine construction set: a system for cobbling together functioning virtual mechanisms of many types out of interchangeable parts. But they never could sell the vaguely defined idea to a publisher, thus going to show that even the games industry of the 1980s maybe wasn’t quite so wild and free as nostalgia might suggest. It was perhaps just as well; they were both still in their infancy as game designers, and it’s doubtful whether the computers of the time were up to the task anyway. Dynamix wound up making their name instead in 3D action games and simulators, a niche that did very well for them.

Yet the machine-construction-set idea never left Tunnell, and, after founding Jeff Tunnell Productions in early 1992, he was convinced that now was finally the right time to see it through. At its heart, the game, which he would name The Incredible Machine, must be a physics simulator. Luckily, all those years Kevin Ryan had spent building all those vehicular simulators for Dynamix provided him with much of the coding expertise and even actual code that he would need to make it. Ryan had the basic engine working within a handful of months, whereupon Tunnell and anyone else who was interested could start pitching in to make the many puzzles that would be needed to turn a game engine into a game.

The look of the Mouse Trap board game…

…is echoed by the Incredible Machine computer game.

If Pinball Construction Set and those other early “creativity games” were one part of the influences that would result in Tunnell’s Incredible Machine, the others are equally easy to spot. One need only glance at a screenshot to be reminded of the old children’s board game cum toy Mouse Trap, a simplistic exercise in roll-and-move whose real appeal is the elaborate, Rube Goldberg-style mechanism that the players slowly assemble out of plastic parts in order to trap one another’s pieces — if, that is, the dodgy contraption, made out of plastic and rubber bands, doesn’t collapse on itself instead. But sadly, there’s only one way to put the mousetrap’s pieces together, making the board game’s appeal for any but the youngest children short-lived. The Incredible Machine, on the other hand, would offer the opportunity to build a nearly infinite number of virtual mousetraps.

In contrast to such venerable inspirations, the other game that clearly left its mark on The Incredible Machine was one of the hottest current hits in the industry at the time the latter was being made. Lemmings, the work of a small team out of Scotland called DMA Design, was huge in every corner of the world where computer games were played — a rarity during what was still a fairly fragmented era of gaming culture. A level-oriented puzzle game of ridiculous charm, Lemmings made almost anyone who saw it want it to pick up the mouse and start playing it, and yet managed to combine this casual accessibility with surprising depth and variety over the course of 120 levels that started out trivial and escalated to infuriating and beyond. Its strong influence can be seen in The Incredible Machine‘s similar structure, consisting of 87 machines to build, beginning with some tutorial puzzles to gently introduce the concepts and parts and ending with some fiendishly complex problems indeed. For that matter, Lemmings‘s commercial success, which proved that there was a real market for accessible games with a different aesthetic sensibility than the hardcore norm, did much to make Sierra, Dynamix’s new owner and publisher, enthusiastic about the project.

Like Lemmings, the heart of The Incredible Machine is its robust, hugely flexible engine. Yet that potential would have been for naught had not Tunnell and his associates delivered a progression of intriguing puzzles that build upon one another in logical ways as you learn more and more about the engine’s possibilities. One might say that, if the wonderful engine is the heart of the game, the superb puzzle design is the soul of the experience — just as is the case, yet again, with Lemmings. In training you how to play interactively and then slowly ramping up the challenge, Lemmings and The Incredible Machine both embraced the accepted best practices of modern game design well before they had become such. They provide you the wonderful rush of feeling smart, over and over again as you master the ever more complex dilemmas they present to you.

To understand how The Incredible Machine actually works in practice, let’s have a look at a couple of its individual puzzles. We’ll begin with the very first of them, an admittedly trivial exercise for anyone with any experience in the game.

Each puzzle begins with three things: with a goal; with an incomplete machine already on the main board, consisting of some selection of immovable parts; and with some additional parts waiting off on the right side of the screen, to be dragged onto the board where we will. In this case, we need to send the basketball through the “hoop” — which is, given that there is no “net” graphic in the game’s minimalist visual toolkit, the vaguely hole-shaped arrangement of pieces below and to the right of where the basketball stands right now. Looking to the parts area at the far right, we see that we have three belts, three hamster wheels, and three ramp pieces to help us accomplish our goal. The score tallies at the bottom of the screen have something or other to do with time and number of puzzles already completed, but feel free to do like most players and ignore them; the joy of this game is in making machines that work, not in chocking up high scores. Click on the image above to see what happens when we start our fragment of a machine in its initial state.

Not much, right? The bowling ball that begins suspended in mid-air simply falls into the ether. Let’s begin to make something more interesting happen by putting a hamster cage below the falling ball. When the ball drops on top of it, the little fellow will get spooked and start to run.


His scurrying doesn’t accomplish anything as long as his wheel isn’t connected to any other parts. So, let’s stretch a belt from the hamster wheel to the conveyor belt just above and to its right.


Now we’re getting somewhere! If we put a second hamster wheel in the path of the second bowling ball, and connect it to the second conveyor belt, we can get the third bowling ball rolling.


And then, as you’ve probably surmised, the same trick can be used to send the basketball through the hoop.

Note that we never made use of the three ramp pieces at our disposal. This is not unusual. Because each puzzle really is a dynamic physics simulation rather than a problem with a hard-coded solution, many of them have multiple solutions, some of which may never have been thought of by the designers. In this quality as well The Incredible Machine is, yet once more, similar to Lemmings.

The game includes many more parts than we had available to us in the first puzzle; there are some 45 of them in all, far more than any single puzzle could ever use. Even the physical environment itself eventually becomes a variable, as the later puzzles begin to mess with gravity and atmospheric pressure.

We won’t look at anything that daunting today, but we should have a look at a somewhat more complicated puzzle from a little later in the game, one that will give us more of a hint of the engine’s real potential.

In tribute to Mouse Trap (and because your humble correspondent here just really likes cats), this one will be a literal game of cat and mouse, as shown above. We need to move Mort the Mouse from the top right corner of the screen to the vaguely basket-like enclosure at bottom left, and we’ll have to use Pokey the Cat to accomplish part of that goal. We have more parts to work with this time than will fit in the parts window to the right. (We can scroll through the pages of parts by clicking on the arrows just above.) So, in addition to the two belts, one gear, one electric motor, two electric fans, and one generator shown in the screenshot below, know that we also have three ramp pieces at our disposal.

Already with the starting setup, a baseball flips on a household power outlet, albeit one to which nothing is initially connected.

We can connect one of the fans to the power outlet to blow Mort toward the left. Unfortunately, he gets stuck on the scenery rather than falling all the way down to the next level.


So, we need to alter the mouse’s trajectory by using one of our ramp pieces; note that these, like many parts, can be flipped horizontally and stretched to suit our needs. Our first attempt at placing the ramp does cause Mort to fall down to the next level, and he then starts running away from Pokey toward the right, as we want. But he’s not fast enough to get to the end of the pipe on which he’s running before Pokey catches him. This is good for Pokey, but not so good for us — and, needless to say, least good of all for Mort. (At least the game politely spares us the carnage that ensues after he’s caught by making him simply disappear.)


A little more experimentation and we find a placement of the ramp that works better.


Now we just have to move the mouse back to the left and into the basket. The most logical approach would seem to be to use the second fan to blow him there. Simple enough, right? Getting it running, however, will be a more complicated affair, considering that we don’t have a handy mains-power outlet already provided down here and that our fan’s cord won’t stretch anywhere near as far as we need it to in order to utilize the outlet above. So, we begin by instead plugging our electric motor into the second socket of the outlet we do have, and belting it up to the gear that’s already fixed in place.


So far, so good. Now we mesh the gear from our box of parts to the one that’s already on the board, and belt it up to our generator, which provides us with another handy power outlet right where we need it.


Now we place our second fan just right, and… voila! We’ve solved the puzzle with two ramp pieces to spare.


The experience of working through the stages of a solution, getting a little closer each time, is almost indescribably satisfying for anyone with the slightest hint of a tinkering spirit. The Incredible Machine wasn’t explicitly pitched as an educational product, but, like a lot of Sierra’s releases during this period, it nevertheless had something of an educational — or at least edutational — aura, what with its bright, friendly visual style and nonviolent premise (the occasional devoured mouse excepted!). There’s much to be learned from it — not least that even the most gnarly problems, in a computer game or in real life, can usually be tackled by breaking them down into a series of less daunting sub-problems. Later on, when the puzzles get really complex, one may question where to even start. The answer, of course, is just to put some parts on the board and connect some things together, to start seeing what’s possible and how things react with one another. Rolling up the old sleeves and trying things is better than sitting around paralyzed by a puzzle’s — or by life’s — complexity. For the pure tinkerers among us, meanwhile, the game offers a free-form mode where you can see what sort of outlandish contraption you can come up with, just for the heck of it. It thus manages to succeed as both a goal-oriented game in the mode of Lemmings and as a software toy in the mode of its 1980s inspirations.

As we’ve already seen, Jeff Tunnell Productions had been formed with the intention of making smaller, more formally innovative games than those typically created inside the main offices of Dynamix. It was tacitly understood that games of this stripe carried with them more risk and perhaps less top-end sales potential than the likes of Damon Slye’s big military flight simulators; these drawbacks would be compensated for only by their vastly lower production costs. It’s thus a little ironic to note that The Incredible Machine upon its release on December 1, 1992, became a major, immediate hit by the standard of any budget. Were it not for another of those aforementioned Damon Slye simulations, a big World War II-themed extravaganza called Aces of the Pacific that had been released just days before it, it would actually have become Dynamix’s single best-selling game to date. As it was, Aces of the Pacific sold a few more absolute units, but in terms of profitability there was no comparison; The Incredible Machine had cost peanuts to make by the standards of an industry obsessed with big, multimedia-rich games.

The size comparisons are indeed telling. Aces of the Pacific had shipped on three disks, while Tunnell’s previous project, the interactive cartoon The Adventures of Willy Beamish, had required six. The Incredible Machine, by contrast, fit comfortably on a single humble floppy, a rarity among games from Dynamix’s parent company Sierra especially, from whose boxes sometimes burst forth as many as a dozen disks, who looked forward with desperate urgency to the arrival of CD-ROMs and their 650 MB of storage. The Incredible Machine needed less than 1 MB of space in all, and its cost of production had been almost as out of proportion with the Sierra norm as its byte count. It thus didn’t take Dynamix long to ask Jeff Tunnell Productions to merge back into their main fold. With the profits The Incredible Machine was generating, it would be best to make sure its developer remained in the Dynamix/Sierra club.

There was much to learn from The Incredible Machine‘s success for any student of the evolving games industry who bothered to pay attention. Along with Tetris and Lemmings before it, it provided the perfect template for “casual” gaming, a category the industry hadn’t yet bothered to label. It could be used as a five-minute palate-cleanser between tasks on the office computer as easily as it could become a weekend-filling obsession on the home computer. It was a low-investment game, quick and easy to get into and get out of, its premise and controls obvious from the merest glance at the screen, yet managed to conceal beneath its shallow surface oceans of depth. At the same time, though, that depth was of such a nature that you could set it aside for weeks or months when life got in the way, then pick it up and continue with the next puzzle as if nothing had happened. This sort of thing, much more so than elaborate interactive movies filmed with real actors on real sound stages —  or, for that matter, hardcore flight simulators that demanded hours and hours of practice just to rise to the level of competent — would prove to be the real future of digital games as mass-market entertainments. The founding ethos of the short-lived entity known as Jeff Tunnell Productions — to focus on small games that did one thing really, really well — could stand in for that of countless independent game studios working in the mobile and casual spaces today.

Still, it would be a long time before The Incredible Machine and games like it became more than occasional anomalies in an industry obsessed with cutting-edge technology and size, both in megabytes and in player time commitment. In the meantime, developers who did realize that not every gamer was thirsting to spend dozens of hours immersed in an interactive Star Wars movie or Lord of the Rings novel could do very well for themselves. The Incredible Machine was the sort of game that lent itself to almost infinite sequels once the core engine had been created. With the latter to hand, all that remained for Tunnell and company was to churn out more puzzles. Thus the next several years brought The Even More! Incredible Machine, a re-packaging of the original game with an additional 73 puzzles; Sid & Al’s Incredible Toons, which moved the gameplay into more forthrightly cartoon territory via its titular Tom & Jerry ripoffs; and The Incredible Machine 2 and The Incredible Toon Machine, which were just what they sounded like they would be. Being the very definition of “more of the same,” these aren’t the sort of games that lend themselves to extended criticism, but certainly players who had enjoyed the original game found plenty more to enjoy in the sequels. Along the way, the series proved quietly but significantly influential as more than just one of the pioneers of casual games in the abstract: it became the urtext of the entire genre of so-called “physics simulators.” There’s much of The Incredible Machine‘s influence to be found in more than one facet of such a modern casual mega-hit as the Angry Birds franchise.

For his part, Jeff Tunnell took away from The Incredible Machine‘s success the lesson that his beloved small games were more than commercially viable. He spent most of the balance of the 1990s working similar territory. In the process, he delivered two games that sold even better than The Incredible Machine franchise — in fact, they became the two best-selling games Dynamix would ever release. Trophy Bass and 3-D Ultra Pinball are far from the best-remembered or best-loved Dynamix-related titles among hardcore gamers today, but they sold and sold and sold to an audience that doesn’t tend to read blogs like this one. While neither is a brilliantly innovative design like The Incredible Machine, their huge success hammers home the valuable lesson, still too often forgotten, that many different kinds of people play many different kinds of games for many different reasons, and that none of these people, games, or reasons is a wrong one.

(Sources: Sierra’s InterAction news magazine of Fall 1992 and Winter 1992; Computer Gaming World of March 1992 and April 1993; Matt Barton’s interviews with Jeff Tunnell in Matt Chat 200 and 201; press releases, annual reports, and other internal and external documents from the Sierra archive at the Strong Museum of Play.

All of the Incredible Machine games are available for purchase in one “mega pack” from GOG.com.)

Read the whole story
luizirber
44 days ago
reply
Davis, CA
Share this story
Delete

#1739 – Soda

1 Share

#1739 – Soda

Also! Check out our library LEGO Kickstarter here! http://bit.ly/librarykits
Read the whole story
luizirber
44 days ago
reply
Davis, CA
Share this story
Delete

Prepare to Appreciate the Solution

1 Share

This post isn't really about chess, though it might seem at first to be.

In The Reviled Art, chess grandmaster Stuart Rachels says that most grandmasters don't like composed chess problems because they are too difficult. It's easy to imagine why average chessplayers find problems too difficult: they aren't all that great chess. But why grandmasters? Rachels contends that problems are hard for tournament players because they are counterintuitive: the solutions contradict the intuitions developed by players whose chess skill is developed and sharpened over the board.

Rachels then says:

Most problems stump me too, so I conceive of the time I spend looking at them as time spent preparing to appreciate their solutions -- not as time spent trying to solve them.

I love this attitude. If I view time spent banging my head against a puzzle or a hard problem as "trying to solve the problem", then not solving the problem might feel like failure. If I view that time as "preparing to appreciate the solution", then I can feel as if my time was well spent even if I don't solve it -- as long as I can appreciate the beauty or depth or originality of the solution.

This attitude is helpful outside of chess. Maybe I'm trying to solve a hard programming problem or trying to understand a challenging area of programming language theory that is new to me. I don't always solve the problem on my own or completely understand the new area without outside help or lots of time reading and thinking. But I often do appreciate the solution once I see it. All the time I spent working on the problem prepared me for that moment.

I often wish that more of my students would adopt Rachels's attitude. I frequently pose a problem for them to work on for a few minutes before we look at a solution, or several candidates, as a group. All too often some students look at the problem, think it's too difficult, and then just sit there waiting for me to show them the answer. This approach often results in them feeling two kinds of failure: they didn't solve the problem, and they don't even appreciate the solution when they see it. They haven't put in the work thinking about it that prepares their minds to really get the solution. Maybe I can do more to help students realize that the work is worth worth the effort even if they don't think they can solve the problem. Send me your suggestions!

Rachels's point about the counterintuitiveness of composed chess problems indicates another way in which trying to solve unorthodox problems can be worthwhile. Sometimes our intuitions let us down because they are too narrow, or even wrong. Trying to solve an unorthodox problem can help us broaden our thinking. My experience with chess compositions is that most of the ideas I need to solve them will not be helpful in over-the-board play; those kinds of positions simply don't occur in real games. But a few themes do apply, and practicing with them helps me learn how to play better in game situations. If nothing else, working on unorthodox problems reminds me to look outside the constraints of my intuitions sometimes when a problem in real life seems too hard.

Read the whole story
luizirber
51 days ago
reply
Davis, CA
Share this story
Delete
Next Page of Stories